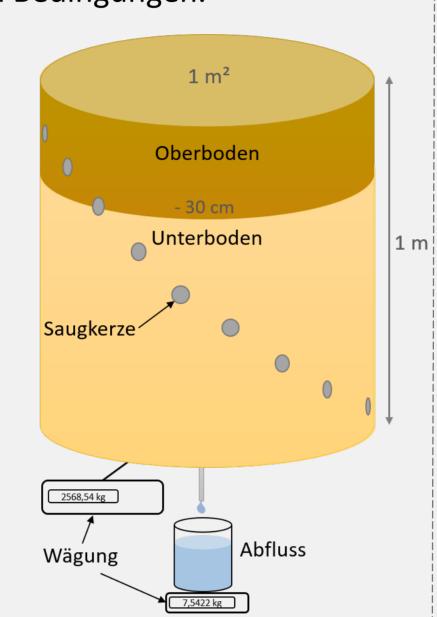


Point-of-Use Re-Use

Dezentrale landwirtschaftliche Wiederverwendung von häuslichem Abwasser zur Verringerung von Nutzungskonkurrenzen

Transferpfade persistenter, mobiler (PM) Stoffe bei der Bewässerung mit behandelten Abwasser


Lysimeterversuche

Aufgabenstellung

Untersuchung des Wasser- und Stofftransports im Gesamtsystem Atmosphäre-Boden-Pflanze unter feldnahen Bedingungen.

Methodik

- Vier Lysimeter aus einem Brandenburger Acker (Zwei gestochen und zwei gepackt)
- Regelmäßige Beprobung des Sickerwassers mit
 9 Saugkerzen (Analyse auf 15 PM-Stoffe)
- Bilanzierung der Wasser- und Stoffflüsse
- 1-minütige Wägung der Lysimeter und Abflüsse (Erfassung der Wasserhaushaltskomponenten)
- Bepflanzung in der Vegetationsperiode (Sommerbraugerste in 2021 und 2022)
- Bewässerung mit behandelten Abwasser aus dem Klärwerk Ruhleben, Berlin
- Zusätzlich Bestimmung von Reaktionsparametern in Laborversuchen

Abbildung 1: Schematische Darstellung eines Lysimeters mit Wägung und mit 9 Saugkerzen instrumentiert.

Ergebnisse

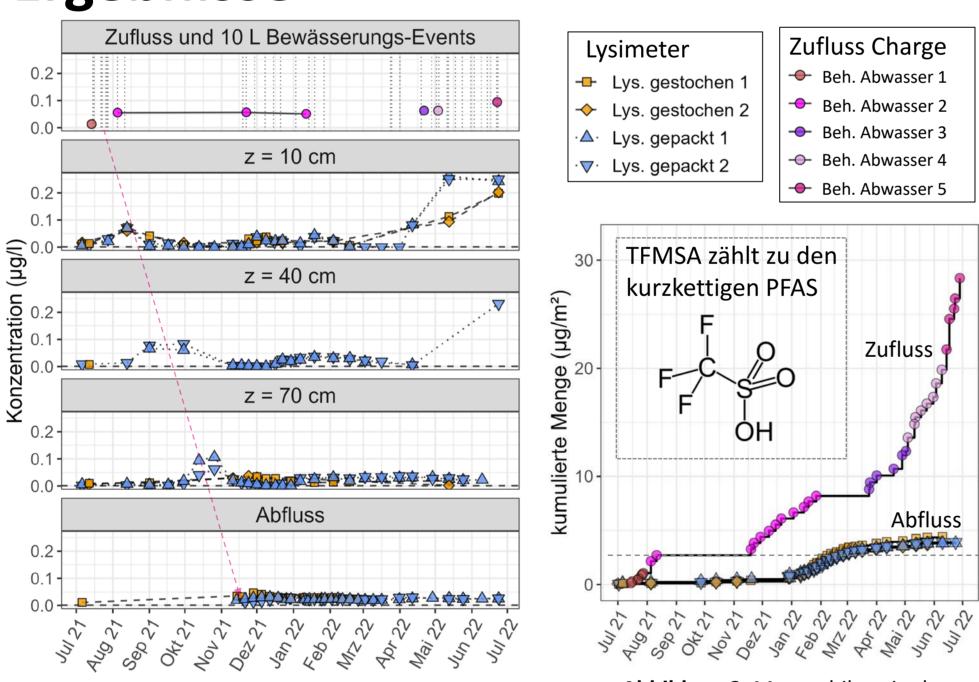


Abbildung 2: Transport von Trifluormethansulfonsäure (TFMSA) im Lysimeter Profil. Oberer Graph zeigt die Konzentration im behandelten Abwasser und vertikal gepunktete Linien die Bewässerungs-Events mit jeweils 10 L.

Abbildung 3: Massenbilanz in den Lysimetern: Kumulierte Stoffmenge von TFMSA im Zufluss (behandeltes Abwasser) und Abfluss der Lysimeter.

Diskussion

- TFMSA weist kaum Reaktion (Sorption /Transformation) im Boden auf
 → Starke Verlagerung Richtung Grundwasser.
- Hohe Evapotranspiration während der Vegetationsperiode→ Aufkonzentrierung der Stoffe im Oberboden im Sommer.
- Im Herbst/Winter schneller Transport mit dem Sickerwasser
 (Verlagerung durch pink-gestrichelte Linie in Abb. 2 markiert)
 → Austrag der applizierten Stoffmenge aus dem Sommer 2021 bis Februar 2022.

Partner

Zwei Substanzen (DZA, TFMSA) mit sehr geringen Rückhalt transportiert, 13 weitere Substanzen teils bis vollständig sorbiert oder transformiert.

Gefäßversuche

Aufgabenstellung

Untersuchung der Transferpfade von PM-Stoffen bei der Bewässerung mit behandelten Abwasser am Beispiel eines rohverzehrten Blattgemüses.

Methodik

- Kultivierung von Rucola (Eruca sativa) in Mitscherlichgefäßen im Gewächshaus der Humboldt-Universität zu Berlin (HUB)
- Nutzung von zwei verschiedenen Bodenarten (regionaler Oberboden, künstliche Rasentragschicht)
- Bewässerung mit unterschiedlichen Konzentrationen von behandelten Abwasser aus dem Klärwerk Ruhleben (0 %, 50 %, 100 %)
- Bewässerung mit 2 Bewässerungsverfahren (Bodennahe und Überkopfbewässerung), keine Sickerwasserbildung
- 4 Wiederholungen pro Untersuchungsfaktor
- Analyse des Erntegutes auf 84 PM-Stoffe mittels SFC-MS/MS am UFZ-Leipzig

Abbildung 4: Kultivierter Rucola im Gewächshaus Dahlem der HUB.

Ergebnisse

PM-Stoffe werden unterschiedlich stark von Rucola aufgenommen. Der überwiegende Anteil der gezeigten Stoffe (Abbildung 5) wird nicht in die essbaren Pflanzenorgane aufgenommen. Einige der gezeigten PM-Stoffe weisen niedrige Wiederfindungsraten im System Boden-Pflanze auf.

Schlussfolgerung

- Die stoffabhängige Aufnahme von PM-Stoffen in roh-verzehrtes Gemüse bei der Bewässerung mit behandelten Abwasser bedarf weiterer Untersuchungen und Bewertungen.
- Es sollte untersucht werden, welche Transformationsprodukte im System Boden-Pflanze entstehen.

Kontakte:

Veikko Junghans, HU Berlin, veikko.junghans@agrar.hu-berlin.de Mogens Thalmann, TU Braunschweig, m.thalmann@tu-br.de André Peters, TU Braunschweig, a.peters@tu-br.de Alina Seelig, UFZ, alina.seelig@ufz.de Thorsten Reemtsma, UFZ, thorsten.reemtsma@ufz.de Daniel Dittmann, UBA, daniel.dittmann@uba.de Aki S. Ruhl, UBA, akisebastian.ruhl@uba.de

