

Non-potable water reuse in Namibia using modified waste stabilization ponds using different pretreatment technologies (EPoNa)

S. Lackner, J. Sinn, P. Cornel, T. Kluge, M. Zimmermann

SPONSORED BY THE

cooperation with

Outapi

(Google Earth 2016 (Version 7.1.8.3036), Price and Hegnauer 2017, modified)

Pond system

Design in 2004:

- Constructed for 2,000 2,500 inhabitants
- Two parallel lines with 4 ponds each, 1 facultative and 3 maturation ponds (41,000 m²)
- ▶ Effluent to be evaporated no discharge into environment
- First extension by one evaporation pond (41,000 m²)

Status quo 2016:

- More than 5,000 people connected (today about 7,000 out of 12,000)
- Evaporation pond too small overflow to the Oshana
- Low efficiency due to overload and missing maintenance (sludge removal)
- Vandalism (fence and embankment)

Some basic calculations

Net evaporation in north Namibia: 2,000 mm/year; → 2 m³/(m² * y) pond area

■ Rule of the thump: 20 m² / person connected for evaporation

Example Outapi:

Total Pond area = $81,000 \text{ m}^2 \rightarrow 444 \text{ m}^3/\text{d mean evaporation}$

But: daily inflow 600 – 1,000 m³ wastewater (dry weather) (up to 2,000 m³ during rainy season)

- → 160 560 m³/d are overflowing in Oshanas
 - Health risk for humans and animals
 - Flood water contamination during rainy season

Solutions?

- Two solutions without discharging in environment:
 - ▶ larger ponds → water is lost by evaporation
 - ▶ water reuse for irrigation → water generates business opportunities
- Water reuse requires improved quality of treated water
- Steps for improvement
 - 1. Desludging of existing ponds to gain treatment volume
 - 2. Pre-treatment to remove solids
 - 3. Optimizing flow in ponds
 - 4. Filtration of effluent

1. Sludge removal from ponds first step: Dewatering for solar drying

1. Sludge removal from ponds second step: removal of dried sludge

2. Pretreatment for solids removal – two options investigated

UASB

solid removal by sedimentation and

digestion

Microscreen (MS)
solid removal by screens (250 μm)

3. Flow optimization

4. Effluent filtration – algae removal

Layout of the enhanced pond

1. Comparison: UASB – Micro-screen COD total and particular in mg/l

Sinn, J. and Lackner, S. 2020. Enhancement of overloaded waste stabilization ponds using different pretreatment technologies: a comparative study from Namibia. Journal of Water Reuse and Desalination 10(4), 500–512.

Comparison: Lines A and B – facultative ponds

Sinn, J. and Lackner, S. 2020. Enhancement of overloaded waste stabilization ponds using different pretreatment technologies: a comparative study from Namibia. Journal of Water Reuse and Desalination 10(4), 500–512.

Comparison: Line A and Line B: total COD

biggest reduction from inflow to outflow A1 / B1 only slight changes in tCOD concentrations form A1 to A4 less reduction of the tCOD in Line B compared to Line A

Comparison: Line A and Line B: Pathogens

Phase	Operation	Starting day
I	Total inflow in Line B – no PreT and PostT	1
11	Total inflow in Line B — only PreT	676
III	Inflow shared between Line A and B (PreT and PostT)	1012

Irrigation Site – Approach

Test fields

Wastewater Treatment Plant Partnership in Northern Namibia

- 13 municipalities from Northern Namibia and 5 Regional Councils participate in the partnership
- Core towns: Outapi, Okahao, Oshikuku

Advantages of the wastewater partnership:

- Exchange of knowledge, experiences (e.g. improved pond management) and information
- Identification of options for sharing financial, personal or technical resources
- Better communication between regional councils and local authorities
- Creating a stronger bargaining power vis-à-vis negotiation partners, e.g. consultants, suppliers, authorities, international organisations

Conclusions

- Pre-treatment reduces CODpart and TSS, the UASB furthermore dissolved COD, pathogens and nutrients
- Effluent quality of upgraded line is significantly better
- Reuse of water and nutrients for irrigation of fodder plants is possible
- Further improvement needed, depending on application and regulations
- Farrow-, drip- and drain-irrigation tested (farrow cheapest, drain best yield)
- Sorghum and Alfalfa compared (better yield with Sorghum)
- Wastewater Treatment Plant Partnership to connect the local operators

More information about EPoNa

- www.epona-africa.com
- www.zdf.de/wissen/nano/ 190829-sendung-102.html (von Minute 3:37 bis 10:40)

- Prof. Dr. Susanne Lackner, TU Darmstadt, s.lackner@iwar.tu-darmstadt.de,
- Dr. Martin Zimmermann, ISOE, zimmermann@isoe.de

References

- Google Earth (Version 7.1.8.3036) 2016 Outapi, Namibia: 17° 30′ 05.06″ S 14°59′24.45″O, elevation 1114 m. http://www.google.com/earth/index.html (accessed 09 July 2017).
- Price, P. and Hegnauer, O. 2017: Staatswappen Afrika, Umriss/Länder. http://www.swissfot.ch/htm_public_d/wappen/world/Af/Africa_Umriss_Laender.htm, (accessed 9 July 2017)
- Sinn, J. and Lackner, S. (2020) Enhancement of overloaded waste stabilization ponds using different pretreatment technologies a comparative study from Namibia; Journal of Water Reuse and Desalination JWRD 10(4), 500–512.

Acknowledgements

All data taken from Jochen Sinn's doctoral thesis (in preparation, printed in 2021):

Thanks to J. Sinn for providing

(Photos from irrigation site and yield results courtesy of Dr. Ehsan Ebrahimi and Prof. Dr. Jana Zinkernagel Hochschule Geisenheim Universität)